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Environment Citizenship

Turn off AC & Turn off AC & Turn off AC &
Turn on Fan Turn on Fan Turn on Fan
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Environment Citizenship
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Environment Citizenship
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Turn on Fan Turn on Fan Turn on Fan
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Environment Citizenship Neighbors

Turn off AC & Turn off AC & Turn off AC & Turn off AC &
Turn on Fan Turn on Fan Turn on Fan Turn on Fan
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Environment Citizenship Neighbors

Turn off AC & Turn off AC & Turn off AC & Turn off AC &
Turn on Fan Turn on Fan Turn on Fan Turn on Fan

Zero Impact on Consumption 6% Drop in
Consumption
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Opower Details

Customer Engagement Platform
for Utilities
Company

* ~300 employees

* Cleantech Company of the Year
2012!

a8 | 75 utility partners covering > 50M
— (A iy households

poswoot T T My fwes My Plan ks & Advice

UtilityCo

> 1.5 Terawatt hours saved

Our DNA

e Data analytics

.
L B E E.:::“'

 Behavioral science
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What is Opower?
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What is Opower?

One giant big data
problem
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Advanced Analytics
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Advanced Analytics provides consumer
insights

Our charter is to provide consumers with insights that
give context and control over how they use energy.
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We use machine learning and predictive
modeling

Our charter is to provide consumers with insights that
give context and control over how they use energy.

Use machine learning, signal processing, and
predictive modeling to provide energy usage insights.

OP®WER



We provide insights into individual energy use

Cooling Heating

\

Jan Apr Jul Oct Jan Apr Jul Oct

OP®WER



Data science
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Data scientists extract meaning

Data science is a discipline ... with the goal of extracting
meaning from data and creating data products.

Wikipedia: http://en.wikipedia.org/wiki/Data_science
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Data scientists are statisticians

Data science is a discipline ... with the goal of extracting
meaning from data and creating data products.

Trevor Hastie

In other words, machine e
learning, statistics, and pretty The Elements of
charts. Statistical Learning

Second Edition

&) Springer

Wikipedia: http://en.wikipedia.org/wiki/Data_science
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Data scientists want to extract meaning

Data science is a discipline ... with the goal of extracting
meaning from data and creating data products.

Wikipedia: http://en.wikipedia.org/wiki/Data_science
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Data scientists are data mungers

Data science is a discipline ... of data munging.

OP®WER
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Data scientists prepare data

Data science is a discipline ... of data munging.

Data munging is the process of converting data from
one form into another for more convenient
consumption.

Wikipedia: http://en.wikipedia.org/wiki/Data_wrangling
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Data scientists are plumbers

Data science is a discipline ... of plumbing.

Plumbing is difficult.
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It’s temporary, | swear!

Data science is a discipline ... of plumbing.

Move data from here
to there.

Hack to get the data
how you want it.

funmeme.com

http://funmeme.com/post/2009/08/02/Plumbing-FAIL-e28093-Funny-Pic.aspx
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It works. For now.

Data science is a discipline ... of plumbing.

Multiple sources are &
tricky to handle.

Construct a series of
tubes.

http://www.ontimeplumber.com.au/plumbing_disasters/plumbing_disasters.html
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Needs user testing

Data science is a discipline ... of plumbing.

Sometimes you have
to start over when
you think you're
done.

http://www.funnyjunk.com/funny_pictures/234485/Awkward/

OP®WER
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Data science is mostly plumbing

Data science is a discipline ... of plumbing.
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It’s where we spend all of our time

Data science is a discipline ... of plumbing.

We spend 80% of our time on data munging and
other infrastructure work.
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Fun stuff only 20% of the time

Data science is a discipline ... of plumbing.

We spend 80% of our time on data munging and
other infrastructure work.

|~ Sprinkle on some modeling and charts for the
other 20%.
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Data science In practice
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Electric tankless water heater 10% off

I
h \ﬂ More saving. More doing.

Store Finder | For Pros | GetItInstalled | Tool Rental | Gift Cards | CreditC

My Store Location: Falls Church #4608 (Change) Local Ad

SHOP BY DEPARTMENT SEARCH ALL -

Home » Plumbing > Water Heaters » Tankless Electric

Share B Emall Print

Stiebel Eltron 4.6 GPM 24.0 kW Whole
House Tankless Electric Water Heater

Model # Tempra 24 Plus  Internet# 203210874
Fodeo ook (5)v  Write a Review 7

$799.00 /EA-Each

D) Free Shipping

This item cannot be shipped to the following state(s): AK,GU HI,PR,VI

http://www.homedepot.com/Plumbing-Water-Heaters-Tankless-Electric/h_d1/N-5yclvZc1ty/R-
203210874/h_d2/ProductDisplay?catalogld=10053&Ilangld=-1&storeld=10051
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Who should get this promotion?

I
h \ﬂ More saving. More doing.

Store Finder | For Pros | GetItInstalled | Tool Rental | Gift Cards | CreditC

My Store Location: Falls Church #4608 (Change) Local Ad

SHOP BY DEPARTMENT SEARCH ALL -

Home » Plumbing > Water Heaters » Tankless Electric

Share B Emall Print

Stiebel Eltron 4.6 GPM 24.0 kW Whole
House Tankless Electric Water Heater

Model # Tempra 24 Plus  Internet# 203210874
Fodeo ook (5)v  Write a Review 7

$799.00 /EA-Each

D) Free Shipping

This item cannot be shipped to the following state(s): AK,GU HI,PR,VI

http://www.homedepot.com/Plumbing-Water-Heaters-Tankless-Electric/h_d1/N-5yclvZc1ty/R-
203210874/h_d2/ProductDisplay?catalogld=10053&Ilangld=-1&storeld=10051
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Maximize take-up rate

I
h \ﬂ More saving. More doing.

Store Finder | For Pros | GetItInstalled | Tool Rental | Gift Cards | CreditC

My Store Location: Falls Church #4608 (Change) Local Ad

SHOP BY DEPARTMENT SEARCH ALL -

Home » Plumbing > Water Heaters » Tankless Electric

Share B Emall Print

Stiebel Eltron 4.6 GPM 24.0 kW Whole
House Tankless Electric Water Heater

Model # Tempra 24 Plus  Internet# 203210874
Fodeo ook (5)v  Write a Review 7

$799.00 /EA-Each

D) Free Shipping

This item cannot be shipped to the following state(s): AK,GU HI,PR,VI

http://www.homedepot.com/Plumbing-Water-Heaters-Tankless-Electric/h_d1/N-5yclvZc1ty/R-
203210874/h_d2/ProductDisplay?catalogld=10053&Ilangld=-1&storeld=10051
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Minimize marketing cost

I
h \ﬂ More saving. More doing.

Store Finder | For Pros | GetItInstalled | Tool Rental | Gift Cards | CreditC

My Store Location: Falls Church #4608 (Change) Local Ad

SHOP BY DEPARTMENT SEARCH ALL -

Home » Plumbing > Water Heaters » Tankless Electric

Share B Emall Print

Stiebel Eltron 4.6 GPM 24.0 kW Whole
House Tankless Electric Water Heater

Model # Tempra 24 Plus  Internet# 203210874
Fodeo ook (5)v  Write a Review 7

$799.00 /EA-Each

D) Free Shipping

This item cannot be shipped to the following state(s): AK,GU HI,PR,VI

http://www.homedepot.com/Plumbing-Water-Heaters-Tankless-Electric/h_d1/N-5yclvZc1ty/R-
203210874/h_d2/ProductDisplay?catalogld=10053&Ilangld=-1&storeld=10051

OP®WER
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Data science In practice

Identify likely
purchasers

OP®WER



Data science in the past

How would we have solved this before Hadoop?
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Past is same as the present: construct a model

How would we have solved this before Hadoop?

Construct a model of likely purchasers.
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Predict purchase behavior with a model

Probability(purchase) = We can model purchase
3, Electric Heat + behavior at the consumer level.

3, Similar Purchases +

35 Neighbors Purchased +  Include predictors that indicate
3, Response Rate + heavy winter electric usage,
neighbor influences, and
responsiveness to past
communications.

3: Type Of Message
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Housing heat type correlates with water heat
type

Probability(purchase) = Does the consumer use
3, Electric Heat + electric heat?

Households with gas heat are
unlikely to purchase an
electric water heater. (Natural
gas is cheap.)
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Willingness to invest in efficient products

Probability(purchase) =

3, Similar Purchases +

Has the consumer
participated in similar
program promotions?

Past purchase behavior is a
good predictor of future
behavior.

OP®WER
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Neighbor effects can be powerful

Probability(purchase) = Is the product popular about
their neighbors?

B; Neighbors Purchased + Neighbor effects may
influence purchase behavior.

OP®WER
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Responsiveness proxies engagement

Probability(purchase) =

3, Response Rate +

Has the consumer
responded to past
communications?

Past responsiveness indicates
high engagement.

OP®WER
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Home Energy Reports influence usage
perceptions

Probability(purchase) = What type of message has
the consumer received on
their Home Energy Reports?

The relative positioning of past
energy usage may influence
willingness to invest in future
lower usage.

B: Type Of Message

OP®WER 42



We have a model. Let’s get the data.

Probability(purchase) =
3, Electric Heat +

3, Similar Purchases +

35 Neighbors Purchased +
3, Response Rate +

3: Type Of Message

OP®WER



Disparate data sources

& g 0

[ ili Customer Additional
Analytics Utility Thermostat Weather teraction dat
server usage data data data In e_rac 10 ata
history streams

LL]

IoooED-
IO D ED -
FOEDEDID-

FOEDEDED-
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Let’s start plumbing

& g 0

[ ili Customer Additional
Analytics Utility Thermostat Weather teraction dat
server usage data data data In e_rac 10 ata
history streams

LL]

IoooED-
IO D ED -
FOEDEDID-

FOEDEDED-
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Pipe utility data

& g 0

Customer Additional
interaction data
history streams

Analytics Utility Thermostat Weather
server usage data data data

HiseH sa Y- sy s
Ioloioio:
HSSH S

LS S
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Pipe customer interaction data

*® m& g @

Analytics Utility Thermostat Weather

Customer Additional

server usage data data data interaction data
history streams
- —
L1 L1 i LL]
LL] LL] Lal (m m]
(m m] LL]

mm LL]
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Finally, pipe Home Energy Report data

Analytics Utility Thermostat Weather
server usage data data data

Customer
interaction
history

Additional
data
streams

OP®WER



Now we’re ready to model

Probability(purchase) =
3, Electric Heat +

3, Similar Purchases +

35 Neighbors Purchased +
3, Response Rate +

3: Type Of Message

OP®WER



There’s a problem

Probability(purchase) =

3, Similar Purchases +

35 Neighbors Purchased + We know these
3, Response Rate + predictors
3; Type Of Message

OP®WER



Heat type is sparse and inaccurate

Probability(purchase) =
B, Electric Heat + This is harder

We know these

predictors

OP®WER
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Model electric heat to compensate for bad data

Probability(purchase) = Parcel data coverage of heat
B, Electric Heat + type is sparse and inaccurate.

We need another data source
for heat type.

OP®WER 52



We construct a model to predict heat type

We can model the presence

Pr(Electric Heat) = of electric heat.

0, Weather Sensitivity +

0, Neighbors Heat + Include predictors of weather

03 Natural Gas Price sensitivity, area prevalence,
and local natural gas price.
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Sensitivity of electricity usage to cold weather

Pr(Electric Heat) =
0, Weather Sensitivity +

How sensitive is the
consumer’s electricity usage
to cold weather?

High sensitivity to cold
weather is our best indicator
of electric heat.

OP®WER
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Heat Type Is Related to Geography

Pr(Electric Heat) =

0, Neighbors Heat +

Is electric heat popular in the
consumer’s area?

Heat type tends to have
specific geographic
distributions.

OP®WER
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Gas Prices May Affect Heat Type Adoption

How expensive is the
: ive?
Pr(Electric Heat) = alternative:

Natural gas may be hard to get
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We have another model

Pr(Electric Heat) =
0, Weather Sensitivity +
0, Neighbors Heat +
05 Natural Gas Price

. Let’s get the data.

OP®WER
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Our plumbing so far

B & g 6

. . Customer Additional
Analytics Utility Thermostat Weather interaction data
server usage data data data .
history streams
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Pipe neighbor heat type

& g 0

. - Customer Additional
Analytics Utility Thermostat Weather interaction data
server usage data data data .
history streams
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Pipe natural gas prices

& g 0

. - Customer Additional
Analytics Utility Thermostat Weather interaction data
server usage data data data .
history streams
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Now we’re ready to model (x2)

Pr(Electric Heat) =
0, Weather Sensitivity +
0, Neighbors Heat +
05 Natural Gas Price

OP®WER
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There’s a problem (x2)

Pr(Electric Heat) =

0, Neighbors Heat +
05 Natural Gas Price

].

We know these

predictors

OP®WER
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We don’t know weather sensitivity

Pr(Electric Heat) = Ui s e 2
0, Weather Sensitivity

We know these
predictors

OP®WER
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Luckily, we know how to do this

Cooling Heating

\

Jan Apr Jul Oct Jan Apr Jul Oct

OP®WER



We have a disaggregation algorithm. Let’s get
the data.

Cooling Heating

\

Jan Apr Jul Oct Jan Apr Jul Oct
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Disaggregate heating and cooling

Correlate electricity usage
with weather.

Weather Sensitivity =

Let’s grab the data.
I ———— J

Jan Apr Jul Oct Jan Apr Jul Oct

OP®WER
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Our plumbing so far (x2)

& g 0

. - Customer Additional
Analytics Utility Thermostat Weather interaction data
server usage data data data .
history streams
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Pipe electricity usage data

Analytics Utility
o usage data

e (26

— e YA
AN \\‘ . |_I_I

| |
~—

~
- ~{§§§

N

Thermostat Weather
data data

&

Customer
interaction
history

\:\":N_': > |
\$’@;3)

r“-ln-<| <

(OO

—_—

Lol s J@L =i

H

Additional
data
streams
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Pipe thermostat data

B & g B

. - Customer Additional
Analytics Utility Thermostat Weather interaction data
server usage data data data .
history streams

OP®WER 59



Pipe weather data

& 6

]
4

. " tomer Additional
Analytics Utility Thermostat Weather -CtuS ti dglltlto i
server usage data data data nieraction ata

history streams

(M
>~

-
9
—
‘

O
©)

"1
L

|

———

l@>3<3=

~—

Ny
=,
7
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Starting to feel like Inception

tousst
reqality o meas
EAMES  FORGER

DISSOLVES FATHER'S FAST COMPANY
"VICTIM OF IDENTITY THEFT
KEEPING IT REAL, STILL
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Now we’re ready to model (finally)

Construct disaggregation

algorithms.
Weather Sensitivity =
Do nad Calculate sensitivity for all
Jan Apr Jul Oct Jan Apr Jul Oct househ0|ds

OP®WER
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Disaggregate and store results

Analytics
server

Utility
usage data

= &

Thermostat Weather

O

]

D

[

Z@G<3=

)
l

[

/1

&

S

\

5

Hise

Customer
interaction
history

XS

H

Additional
data
streams

©)

L

<

{
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We know each customer’s heating sensitivity

Let’s continue with our electric
heat model.

@Weather Sensitivity =

0| hetatinsi

Jan Apr Jul Oct Jan Apr Jul Oct
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We have the data to finish our heat type model

Construct electric heat

Pr(Electric Heat) = model.
5, Weather Sensitivity +

0, Neighbors Heat + Impute heat type for all
05 Natural Gas Price households.
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Impute heat type and store results

& g 0

. - Customer Additional
Analytics Utility Thermostat Weather interaction data
server usage data data data .
history streams

OP®WER



We know each customer’s heat type

Let’s continue with our water

@Pr(EIectric Heat) = heater purchase model.

0, Weather Sensitivity +
0, Neighbors Heat +
05 Natural Gas Price

OP®WER
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We now have the data to finish our purchase

model

Probability(purchase) =
3, Electric Heat +

3, Similar Purchases +

35 Neighbors Purchased +
3, Response Rate +

3: Type Of Message

Construct purchase behavior
model.

Calculate likelihood to
purchase for all households.

OP®WER



Calculate likelihood to purchase and store

results
B & g ¢

B

\

. - Customer Additional
Analytics g Utility Thermostat Weather interaction data
server usage data data data .
/ history streams

OP®WER



We have our desired result

@) m & g 6

. - Customer Additional
Analytics g Utility Thermostat Weather interaction data
server usage data data data .
/ history streams

OP®WER 80



Data science is plumbing

server
.

Additional
data
streams

OP®WER

http://www.ontimeplumber.com.au/plumbing_disasters/plumbing_disasters.htm



New request: Who would buy an efficient pool

pump for 10% off?

Pentair 3 HP Intelliflo Variable Speed Pump, 230-Volt, 16-

Ampere
by Pentair

Be the first to review this item | [ Like | (0)

List Price: $+5675-28
price: $994,99
You Save: $580.29 (37%)

Mote: Free shipping when purchased from Positive Pool Whaolesale. Prime eligible offers
available in more buying choices.

Only 15 left in stock.
Ships from and sold by Positive Pool Wholesale.

5 new from $994.95

Energy savings up to 90-percent vs. traditional pumps
Dramatically quieter operation

8 programmable speed settings and built-in timer assure optimum speed and run times for
maximum efficiency and savings

Builtin diagnostics protect the pump for longer service life

Is this a gift? This itermn ships in its own packaging. To keep the contents concealed,
select This will be a gift during checkout.

http://www.amazon.com/Pentair-Intelliflo-Variable-230-Volt-16-Ampere/dp/BO07E4VWNO/ref=sr_1_3?ie=UTF8&qid=1350601695&sr=8-

3&keywords=variable+speed+pool+pump

OP®WER
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| remember what the last model took...

Utility Customer

Analytics Thermostat Weather . )
interaction

server usage data data data .
/ history
\ 4 v v
. 1 :
\\l |

B & g 6

Additional
data
streams

OP®WER



... and | start searching the want-ads

by stackoverflow

Data Scientist DataMinr

Mew York, NY
At Dataminr, we are looking for dedicated data scientists to help us sort, analyze and deliver relevant...

Kick-ass Data Scientist for UK based Start-up Skimlinks
London, United Kingdom
Skimlinks is looking for a data scientist to help us back up important business decisions with...

nlp machine-learning statistice r  matlab

Scientist/Research Engineer, Applied Science Turn
Redwood City, CA

.1l CAREERS 2.0 =

11 jobs for “data scientist” sortby: | Search relevance

2 weeks ago

3 days ago

3 weeks ago

Turn delivers real-time insights that transform the way leading advertising agencies and marketers make...

http://careers.stackoverflow.com/jobs?searchTerm=data+scientist&location=

OP®WER
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But it gets better

Now we have Hadoop!

OP®WER



Past is same as the present: construct a model

How would we have solved this with Hadoop?

Construct a model of likely purchasers.

OP®WER



Hadoop has a key advantage

How would we have solved this with Hadoop?

Construct a model of likely purchasers.

Integrated data warehousing and data crunching

OP®WER



Data and analytical capabilities in a single

place
B & § @

ili Customer Additi |
M Thermostat Weather interaction Tt
usage data data data history e
we 000000
Cluster
mE EA NN BN [ER EN
- mE AR AN [N

H AR AR <+

P
Algorithm MWMPWN{W

S
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Hadoop solves plumbing problem

*dm & &

Utility Thermostat Weather ig:esr;ocrzg:]
usage data data data .
history

Hadoop a 3 3
Cluster

All the data mm (WA (EE (N [ER (BN
N [Am @AW ig- E i-g-

b

Algorithm qu’ﬂhw’ﬂ*ﬂiyﬂﬁr‘{lf‘#WM’
S

H

Additional
data
streams

—

OP®WER
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Fully integrated data crunching

fig/ B A\
< \\\
Utility Thermostat Weather .Custonr?er Additional
interaction data
usage data data data history streams

Hadoop S 3 3
Cluster ' '

All the data

Analytical | 1 T
capabilities Algorithm. {jifufi'

S

OP®WER %



Our model is the same. Let’s start building it.

Probability(purchase) =
3, Electric Heat +

3, Similar Purchases +

35 Neighbors Purchased +
3, Response Rate +

3: Type Of Message

OP®WER



Still need weather sensitivity

Weather Sensitivity =

InG—

Jan Apr Jul Oct Jan Apr Jul Oct

Calculating sensitivity is much
easier with Hadoop.

Let’s get the data.

OP®WER
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Fetch your data with Hive views

= & & 0

Utility Thermostat Weather ig:esr;ocrgg:] Adggltznal
usage data data data .
history streams
we 0000 00
Cluster
/HE| [HA EN BN [ER [ENH
— | | mEm An AN EE AN AR

(0 Lo
Views Algorithm MWMPWWM

S
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Views provide fresh data on demand

Hive is a SQL-like interface to Hadoop.
Hive views are saved queries that you treat like a table.
Build views on top of views to setup complex analyses.

Querying a view takes longer to execute, but it ensures fresh
data.

OP®WER 94



View syntax is plain SQL

CREATE VIEW
analytics.disaggregation_inputs_view
AS
SELECT
w.temperature,
r.usage value
FROM
analytics.weather w
JOIN analytics.reads r on w.zip code = r.zip_code

OP®WER




Views are data on demand

=

&

H

Additional
data
streams

More data without

Utility Thermostat Weather ig:esrt;ocrzg:]
usage data data data history
Hadoop ‘ ‘ ‘ 3 3 3
Clust
uster \ll\ \l!l\ \ll\ mm A [
SN \-I\ \nn\ \ul\ \ll
D
Ve Algorlthm '[

the storage

OP®WER
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Views point at data without storing it

oF

Weather
data

&

Customer
interaction
history

Utility Thermostat
usage data data
Hadoop 7\
Cluster
\llT LL]

— (x _-‘—7‘

>
q =7 :

— ——ri ‘HH‘

Y

Views

Algorlthm -{

H

Additional
data
streams

More data without
the storage

OP®WER
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Views on top of views for complex analyses

@ m & & B

. Customer Additional
Utility Thermostat Weather . )
interaction data
usage data data data .
history streams

Hadoop ”

Cluster

-

[Tl
Ll

r \HH\ \HI\ [

_ﬁ e More data without

the storage

OP®WER



Setup a view to get disaggregation data

= & & 0

. Customer Additional
Utility Thermostat Weather . )
interaction data
usage data data data .
history streams

Hadoop 7\ B a a
Cluster S

|_£T uA NN 55 &R (§§

B Y 4O e R
(0 Lo
Views Algorithm MWMPWWM

S

OP®WER



We have our disaggregation data

We need to calculate the
model and store the results.

Weather Sensitivity =

Hadoop is built to do both.
I ———— P

Jan Apr Jul Oct Jan Apr Jul Oct
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Setup a view to run disaggregation algorithms

= & & 0

Utility Thermostat Weather ig:esr;ocrgg:] Adggltznal
usage data data data .
history streams
Slsiter E)f EA [(EE [EE (A (BN
U/
B ﬁ/ >0 0 0 0
— -=7n (AN (AW (Em| AR (AW <+——

-
-_—
-~
-~

0 e
Views Algorithm MWMPWWM

S
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Hadoop streaming + Views = Power

=

Weather
data

\llT \l!l\ \IIH

sl

& ¢

Customer Additional
interaction data
history streams

Use Hadoop
streaming
within the view

Utility Thermostat
usage data data
Hadoop ‘
Cluster
.
D
Views

~-
-
--~-~1
|5 l|~
I

Algorithm -{Iﬁ\ﬂ[‘q’ﬂhw’*ﬂy’ 'ﬁw” i

S

OP®WER
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Hadoop streaming can calculate anything

Stream data through any script.

Pipe any data through standard input and send any data to
standard output.

Integrate with any language: R, Python, Ruby, Bash, Java, etc.

SELECT TRANSFORM command in Hive is an easy way to use
Hadoop streaming.
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Hadoop streaming is easy to implement in Hive

CREATE VIEW
analytics.disaggregation_outputs _view

AS

SELECT

TRANSFORM ( Executable reads

diw.temperature, from stdin and
diw.usage value

) writes to stdout

USING
“weather_disaggregation.R’
FROM
analytics.disaggregation_inputs view diw

OP®WER




Simple SQL syntax to produce any result

Utility
usage data

Thermostat
data

Hadoop

Cluster

=

Weather
data

my mn [mE |

& ¢

Customer Additional
interaction data
history streams

Algorithm in
any language

Agorithm | A“Fw’ﬂ"‘“’"*f’*lf"tﬁr‘ﬁw

S

OP®WER
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We know each customer’s heating sensitivity

Let’s continue with our electric
heat model.

@Weather Sensitivity =

0| hetatinsi

Jan Apr Jul Oct Jan Apr Jul Oct
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We’re ready to model electric heat

Let’s get our data.

Pr(Electric Heat) =
0, Weather Sensitivity +
0, Neighbors Heat +
05 Natural Gas Price

OPGWER 107



Setup a view to fetch data for electric heat

model
m & g 0

. Customer Additional
Utility Thermostat Weather . ) d
usage data data data Interaction ata
history streams

Gl ‘ ‘5’7|-‘-| |-‘-| L f-am
- jﬁ‘%‘%’u |!-|_|-|>|;n| |;3-| —
bl
Views Algorithm \»M‘WW\PWW

S
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Implement electric heat model in a view

= & & 0

. Customer Additional
Utility Thermostat Weather . )
interaction data
usage data data data .
history streams

173;;6;5 0 0.00 0 0
wm_{in (WE (wm (WA (WN
B _%i_' =N T§-771g:|>|?n| |:-3-| —
606
Vews g WWWW

S
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We know each customer’s heat type

Let’s continue with our water

@Pr(EIectric Heat) = heater purchase model.

0, Weather Sensitivity +
0, Neighbors Heat +
05 Natural Gas Price
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We’re ready to model purchase behavior

Probability(purchase) = Let’s get our data.
3, Electric Heat +

3, Similar Purchases +

35 Neighbors Purchased +

3, Response Rate +

3: Type Of Message
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Setup a view to fetch data for purchase
behavior model

*dm & & @

. Customer Additional
Utility Thermostat Weather . )
interaction data
usage data data data .
history streams

Hadoop ‘ ‘ ‘ a B a
Cluster A
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Implement purchase behavior model

® B & g 0

. Customer Additional
Utility Thermostat Weather . )
interaction data
usage data data data .
history streams

Hadoop B B 5
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B 40 870 0-0 0
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We have our desired result

=

S

&

H

Additional
data
streams

One query to

get the list

Utility Thermostat Weather ig:esr;ocrzg:]
usage data data data hi
Istory
Hadoop A‘ ‘ ‘ ‘
Cluster ‘..‘ LL] =
— x” nE_ A
s -

_h "’ _
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e Algorithm -{M{‘
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Major plumbing in the old world

@) m & g 6

. - Customer Additional
Analytics Utility Thermostat Weather interaction data
server usage data data data .
/ history streams
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Some considerations on the past vs now

Refresh data

Score new
households

Add new data
source

Build new
model
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Refreshing data is a breeze

Past &

Refresh data Major plumbing

Now @

Single query
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Easy to calculate insights for new households

Past Now @

Score new

households Major plumbing Single query
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New data? No problem.

Past Now @

Add new data

source Major plumbing Couple lines of SQL
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Re-use previous work for new models

Past Now @

Build new

model Major plumbing Re-use views
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Hadoop radically reduces plumbing

Refresh data

Score new
households

Add new data
source

Build new
model

Now @

Single query
Single query
Couple lines of SQL

Re-use views
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Big data
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Big data
Quantity
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Big data
Variety + Quantity
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It doesn’t have to be like this

Analytics

/
J
!
Bt

&

server/
‘

Utility
usage data

data

data

Customer
interaction
history

H

Additional
data
streams
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You could look for a new job

.1l CAREERS 2.0 =

by stackoverflow

11 jobs for “data scientist” sortby:  Search relevance .
Data Scientist DataMinr 2 weeks ago
Mew York, NY

At Dataminr, we are looking for dedicated data scientists to help us sort, analyze and deliver relevant...

Kick-ass Data Scientist for UK based Start-up Skimlinks 3 days ago
London, United Kingdom
Skimlinks is looking for a data scientist to help us back up important business decisions with...

nlp machine-learning statistice r  matlab

Scientist/Research Engineer, Applied Science Turn 3 weeks ago
Redwood City, CA
Turn delivers real-time insights that transform the way leading advertising agencies and marketers make...

http://careers.stackoverflow.com/jobs?searchTerm=data+scientist&location=
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Hadoop
Big data plumbing
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Happy plumbing!

Erik Shilts
Advanced Analytics

erik.shilts@opower.com
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