
Data Science with Hadoop 
at Opower 

Erik Shilts 
Advanced Analytics 
 
 
erik.shilts@opower.com 



What is Opower? 



A study: 
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Opower Details 
Customer Engagement Platform  
for Utilities 

Company 
• ~300 employees 

• Cleantech Company of the Year 
2012! 

• 75 utility partners covering > 50M 
households 

• > 1.5 Terawatt hours saved 

 

Our DNA 
• Data analytics 

• Behavioral science 



What is Opower? 



What is Opower? 

One giant big data 
problem 



Advanced Analytics 



Advanced Analytics provides consumer 
insights 

13 

Our charter is to provide consumers with insights that 
give context and control over how they use energy. 



We use machine learning and predictive 
modeling 

14 

Our charter is to provide consumers with insights that 
give context and control over how they use energy. 

 

Use machine learning, signal processing, and 
predictive modeling to provide energy usage insights. 



Jan Apr Jul Oct Jan Apr Jul Oct

Baseload 

Heating Cooling 

We provide insights into individual energy use 



Data science 



Data scientists extract meaning 

17 

Data science is a discipline … with the goal of extracting 
meaning from data and creating data products. 

Wikipedia: http://en.wikipedia.org/wiki/Data_science 



Data scientists are statisticians 
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Data science is a discipline … with the goal of extracting 
meaning from data and creating data products. 

Wikipedia: http://en.wikipedia.org/wiki/Data_science 

In other words, machine 
learning, statistics, and pretty 
charts. 



Data scientists want to extract meaning 
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Data science is a discipline … with the goal of extracting 
meaning from data and creating data products. 

Wikipedia: http://en.wikipedia.org/wiki/Data_science 

In other words, machine 
learning, statistics, and pretty 
charts. 



Data scientists are data mungers 
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Data science is a discipline … of data munging. 



Data scientists prepare data 
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Data science is a discipline … of data munging. 

 

Data munging is the process of converting data from 
one form into another for more convenient 
consumption.  

Wikipedia: http://en.wikipedia.org/wiki/Data_wrangling 



Data scientists are plumbers 
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Data science is a discipline … of plumbing.  

 

Plumbing is difficult. 



It’s temporary, I swear! 
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Data science is a discipline … of plumbing.  

http://funmeme.com/post/2009/08/02/Plumbing-FAIL-e28093-Funny-Pic.aspx 

Move data from here 
to there. 

Hack to get the data 
how you want it. 



It works. For now. 
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Data science is a discipline … of plumbing.  

http://www.ontimeplumber.com.au/plumbing_disasters/plumbing_disasters.html 

Multiple sources are 
tricky to handle. 

Construct a series of 
tubes. 



Needs user testing 
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Data science is a discipline … of plumbing.  

http://www.funnyjunk.com/funny_pictures/234485/Awkward/ 

Sometimes you have 
to start over when 
you think you’re 
done. 



Data science is mostly plumbing 
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Data science is a discipline … of plumbing.  



It’s where we spend all of our time 
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Data science is a discipline … of plumbing.  

 

We spend 80% of our time on data munging and 
other infrastructure work. 

 



Fun stuff only 20% of the time 

28 

Data science is a discipline … of plumbing.  

 

We spend 80% of our time on data munging and 
other infrastructure work. 

Sprinkle on some modeling and charts for the 
other 20%. 



Data science in practice 



Electric tankless water heater 10% off 
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http://www.homedepot.com/Plumbing-Water-Heaters-Tankless-Electric/h_d1/N-5yc1vZc1ty/R-
203210874/h_d2/ProductDisplay?catalogId=10053&langId=-1&storeId=10051 



Who should get this promotion? 
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http://www.homedepot.com/Plumbing-Water-Heaters-Tankless-Electric/h_d1/N-5yc1vZc1ty/R-
203210874/h_d2/ProductDisplay?catalogId=10053&langId=-1&storeId=10051 



Maximize take-up rate 
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http://www.homedepot.com/Plumbing-Water-Heaters-Tankless-Electric/h_d1/N-5yc1vZc1ty/R-
203210874/h_d2/ProductDisplay?catalogId=10053&langId=-1&storeId=10051 



Minimize marketing cost 
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http://www.homedepot.com/Plumbing-Water-Heaters-Tankless-Electric/h_d1/N-5yc1vZc1ty/R-
203210874/h_d2/ProductDisplay?catalogId=10053&langId=-1&storeId=10051 



Data science in practice 

Identify likely 
purchasers 



Data science in the past 
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How would we have solved this before Hadoop? 



Past is same as the present: construct a model 

36 

How would we have solved this before Hadoop? 

 

Construct a model of likely purchasers. 



Predict purchase behavior with a model 
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Probability(purchase)  = 
β1 Electric Heat + 

β2 Similar Purchases + 

β3 Neighbors Purchased + 

β4 Response Rate + 

β5 Type Of Message 

We can model purchase 
behavior at the consumer level. 

 

Include predictors that indicate 
heavy winter electric usage, 
neighbor influences, and 
responsiveness to past 
communications. 



Housing heat type correlates with water heat 
type 
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Probability(purchase)  = 
β1 Electric Heat + 

β2 Similar Purchases + 

β3 Neighbors Purchased + 

β4 Response Rate + 

β5 Type Of Message 

Does the consumer  use 
electric heat? 

 

Households with gas heat are 
unlikely to purchase an 
electric water heater. (Natural 
gas is cheap.) 



Willingness to invest in efficient products 
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Probability(purchase)  = 
β1 Electric Heat + 

β2 Similar Purchases + 

β3 Neighbors Purchased + 

β4 Response Rate + 

β5 Type Of Message 

Has the consumer 
participated in similar 
program promotions? 

 

Past purchase behavior is a 
good predictor of future 
behavior. 



Neighbor effects can be powerful 
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Probability(purchase)  = 
β1 Electric Heat + 

β2 Similar Purchases + 

β3 Neighbors Purchased + 

β4 Response Rate + 

β5 Type Of Message 

Is the product popular about 
their neighbors? 

 

Neighbor effects may 
influence purchase behavior. 



Responsiveness proxies engagement 
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Probability(purchase)  = 
β1 Electric Heat + 

β2 Similar Purchases + 

β3 Neighbors Purchased + 

β4 Response Rate + 

β5 Type Of Message 

Has the consumer 
responded to past 
communications? 

 

Past responsiveness indicates 
high engagement. 



Home Energy Reports influence usage 
perceptions 
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Probability(purchase)  = 
β1 Electric Heat + 

β2 Similar Purchases + 

β3 Neighbors Purchased + 

β4 Response Rate + 

β5 Type Of Message 

What type of message has 
the consumer received on 
their Home Energy Reports? 

 

The relative positioning of past 
energy usage may influence 
willingness to invest in future 
lower usage. 



We have a model. Let’s get the data. 
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Probability(purchase)  = 
β1 Electric Heat + 

β2 Similar Purchases + 

β3 Neighbors Purchased + 

β4 Response Rate + 

β5 Type Of Message 



Disparate data sources 

44 

Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

Analytics 
server 



Let’s start plumbing 
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Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

Analytics 
server 



Pipe utility data 
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Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

Analytics 
server 



Pipe customer interaction data 
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Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

Analytics 
server 



Finally, pipe Home Energy Report data 
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Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

Analytics 
server 



Now we’re ready to model 
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Probability(purchase)  = 
β1 Electric Heat + 

β2 Similar Purchases + 

β3 Neighbors Purchased + 

β4 Response Rate + 

β5 Type Of Message 



There’s a problem 
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Probability(purchase)  = 
β1 Electric Heat + 

β2 Similar Purchases + 

β3 Neighbors Purchased + 

β4 Response Rate + 

β5 Type Of Message 

We know these 
predictors 



Heat type is sparse and inaccurate 
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Probability(purchase)  = 
β1 Electric Heat + 

β2 Similar Purchases + 

β3 Neighbors Purchased + 

β4 Response Rate + 

β5 Type Of Message 

We know these 
predictors 

This is harder 



Model electric heat to compensate for bad data 
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Probability(purchase)  = 
β1 Electric Heat + 

β2 Similar Purchases + 

β3 Neighbors Purchased + 

β4 Response Rate + 

β5 Type Of Message 

Parcel data coverage of heat 
type is sparse and inaccurate. 

 

We need another data source 
for heat type. 



We construct a model to predict heat type 
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Probability(purchase)  = 
β1 Pr(Electric Heat) = 

δ1 Weather Sensitivity + 

δ2 Neighbors Heat + 

δ3 Natural Gas Price 

We can model the presence 
of electric heat. 

 

Include predictors of weather 
sensitivity, area prevalence, 
and local natural gas price. 



Sensitivity of electricity usage to cold weather 
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Probability(purchase)  = 
β1 Pr(Electric Heat) = 

δ1 Weather Sensitivity + 

δ2 Neighbors Heat + 

δ3 Natural Gas Price 

How sensitive is the 
consumer’s electricity usage 
to cold weather? 

 

High sensitivity to cold 
weather is our best indicator 
of electric heat. 



Heat Type Is Related to Geography 
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Probability(purchase)  = 
β1 Pr(Electric Heat) = 

δ1 Weather Sensitivity + 

δ2 Neighbors Heat + 

δ3 Natural Gas Price 

Is electric heat popular in the 
consumer’s area? 

 

Heat type tends to have 
specific geographic 
distributions. 



Gas Prices May Affect Heat Type Adoption 
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Probability(purchase)  = 
β1 Pr(Electric Heat) = 

δ1 Weather Sensitivity + 

δ2 Neighbors Heat + 

δ3 Natural Gas Price 

How expensive is the 
alternative? 

 

Natural gas may be hard to get 
in certain areas. 



We have another model. Let’s get the data. 
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Probability(purchase)  = 
β1 Pr(Electric Heat) = 

δ1 Weather Sensitivity + 

δ2 Neighbors Heat + 

δ3 Natural Gas Price 



Our plumbing so far 
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Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

Analytics 
server 



Pipe neighbor heat type 
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Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

Analytics 
server 



Pipe natural gas prices 
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Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

Analytics 
server 



Now we’re ready to model (x2) 
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Probability(purchase)  = 
β1 Pr(Electric Heat) = 

δ1 Weather Sensitivity + 

δ2 Neighbors Heat + 

δ3 Natural Gas Price 



There’s a problem (x2) 

62 

Probability(purchase)  = 
β1 Pr(Electric Heat) = 

δ1 Weather Sensitivity + 

δ2 Neighbors Heat + 

δ3 Natural Gas Price 
We know these 

predictors 



We don’t know weather sensitivity 

63 

Probability(purchase)  = 
β1 Pr(Electric Heat) = 

δ1 Weather Sensitivity + 

δ2 Neighbors Heat + 

δ3 Natural Gas Price 
We know these 

predictors 

This is harder 



Jan Apr Jul Oct Jan Apr Jul Oct

Baseload 

Heating Cooling 

Luckily, we know how to do this 



Jan Apr Jul Oct Jan Apr Jul Oct

Baseload 

Heating Cooling 

We have a disaggregation algorithm. Let’s get 
the data. 



Disaggregate heating and cooling 
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Probability(purchase)  = 
β1 Pr(Electric Heat) = 

δ1 Weather Sensitivity = 

 

 Jan Apr Jul Oct Jan Apr Jul Oct

Correlate electricity usage 
with weather. 

 

Let’s grab the data. 



Our plumbing so far (x2) 
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Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

Analytics 
server 



Pipe electricity usage data 
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Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

Analytics 
server 



Pipe thermostat data 

69 

Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

Analytics 
server 



Pipe weather data 
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Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

Analytics 
server 



Starting to feel like Inception 

71 http://www.chartgeek.com/wp-content/uploads/2012/04/inception-explained-chart.jpg 



Now we’re ready to model (finally) 
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Probability(purchase)  = 
β1 Pr(Electric Heat) = 

δ1 Weather Sensitivity = 

 

 Jan Apr Jul Oct Jan Apr Jul Oct

Construct disaggregation 
algorithms. 

 

Calculate sensitivity for all 
households. 



Disaggregate and store results 
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Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

Analytics 
server 



We know each customer’s heating sensitivity 
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Probability(purchase)  = 
β1 Pr(Electric Heat) = 

δ1 Weather Sensitivity =  

 

 Jan Apr Jul Oct Jan Apr Jul Oct

Let’s continue with our electric 
heat model. 



We have the data to finish our heat type model 
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Probability(purchase)  = 
β1 Pr(Electric Heat) = 

δ1 Weather Sensitivity + 

δ2 Neighbors Heat + 

δ3 Natural Gas Price 

Construct electric heat 
model. 

 

Impute heat type for all 
households. 



Impute heat type and store results 
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Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

Analytics 
server 



We know each customer’s heat type 

77 

Probability(purchase)  = 
    Pr(Electric Heat) = 

δ1 Weather Sensitivity + 

δ2 Neighbors Heat + 

δ3 Natural Gas Price 

Let’s continue with our water 
heater purchase model. 



We now have the data to finish our purchase 
model 
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Probability(purchase)  = 
β1 Electric Heat + 

β2 Similar Purchases + 

β3 Neighbors Purchased + 

β4 Response Rate + 

β5 Type Of Message 

Construct purchase behavior 
model. 

 

Calculate likelihood to 
purchase for all households. 



Calculate likelihood to purchase and store 
results 
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Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

Analytics 
server 



We have our desired result 
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Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

Analytics 
server 



Data science is plumbing 
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Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

Analytics 
server 

http://www.ontimeplumber.com.au/plumbing_disasters/plumbing_disasters.html 



New request: Who would buy an efficient pool 
pump for 10% off? 
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http://www.amazon.com/Pentair-Intelliflo-Variable-230-Volt-16-Ampere/dp/B007E4VWNO/ref=sr_1_3?ie=UTF8&qid=1350601695&sr=8-
3&keywords=variable+speed+pool+pump 



I remember what the last model took… 

83 

Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

Analytics 
server 



… and I start searching the want-ads 
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http://careers.stackoverflow.com/jobs?searchTerm=data+scientist&location= 



But it gets better 

85 

http://careers.stackoverflow.com/jobs?searchTerm=data+scientist&location= 

Now we have Hadoop! 



Past is same as the present: construct a model 
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How would we have solved this with Hadoop? 

 

Construct a model of likely purchasers. 

 



Hadoop has a key advantage 
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How would we have solved this with Hadoop? 

 

Construct a model of likely purchasers. 

 

 Integrated data warehousing and data crunching 



Data and analytical capabilities in a single 
place 

88 

Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

2 

4 

3 1 

Hadoop 
Cluster 

Algorithm
s 

2 

4 

3 1 



Hadoop solves plumbing problem 
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Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
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4 
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s 
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4 

3 1 
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Fully integrated data crunching  
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Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

2 

4 

3 1 

Hadoop 
Cluster 

Algorithm
s 

2 

4 

3 1 

All the data 

Analytical 
capabilities 



Our model is the same. Let’s start building it. 
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Probability(purchase)  = 
β1 Electric Heat + 

β2 Similar Purchases + 

β3 Neighbors Purchased + 

β4 Response Rate + 

β5 Type Of Message 



Still need weather sensitivity 
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Probability(purchase)  = 
β1 Pr(Electric Heat) = 

δ1 Weather Sensitivity = 

 

 Jan Apr Jul Oct Jan Apr Jul Oct

Calculating sensitivity is much 
easier with Hadoop. 

 

Let’s get the data. 



Fetch your data with Hive views 
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Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

2 

4 

3 1 

Hadoop 
Cluster 

Algorithm
s 

2 

4 

3 1 

Views 



Views provide fresh data on demand 
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Hive is a SQL-like interface to Hadoop. 

 

Hive views are saved queries that you treat like a table. 

 

Build views on top of views to setup complex analyses. 

 

Querying a view takes longer to execute, but it ensures fresh 
data. 



View syntax is plain SQL 
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CREATE VIEW  
  analytics.disaggregation_inputs_view  
AS 
SELECT 
  w.temperature, 
  r.usage_value 
FROM 
  analytics.weather w 
  JOIN analytics.reads r on w.zip_code = r.zip_code 
; 



Views are data on demand 
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Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

2 

4 

3 1 

Hadoop 
Cluster 

Algorithm
s 

2 

4 

3 1 

Views 

More data without 
the storage 



Views point at data without storing it 
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Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

2 

4 

3 1 

Hadoop 
Cluster 

Algorithm
s 

2 

4 

3 1 

Views 

More data without 
the storage 



Views on top of views for complex analyses 
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Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

2 

4 

3 1 

Hadoop 
Cluster 

Algorithm
s 

2 

4 

3 1 

Views 

More data without 
the storage 



Setup a view to get disaggregation data 
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Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

2 

4 

3 1 

Hadoop 
Cluster 

Algorithm
s 

2 

4 

3 1 

Views 



We have our disaggregation data 
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Probability(purchase)  = 
β1 Pr(Electric Heat) = 

δ1 Weather Sensitivity = 

 

 Jan Apr Jul Oct Jan Apr Jul Oct

We need to calculate the 
model and store the results. 

 

Hadoop is built to do both. 



Setup a view to run disaggregation algorithms 
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Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

2 

4 

3 1 

Hadoop 
Cluster 

Algorithm
s 

2 

4 

3 1 

Views 



Hadoop streaming + Views = Power 
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Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

2 

4 

3 1 

Hadoop 
Cluster 

Algorithm
s 

2 

4 

3 1 

Views 

Use Hadoop 
streaming 

within the view 



Hadoop streaming can calculate anything 
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Stream data through any script. 

 

Pipe any data through standard input and send any data to 
standard output. 

 

Integrate with any language: R, Python, Ruby, Bash, Java, etc. 

 

SELECT TRANSFORM command in Hive is an easy way to use 
Hadoop streaming. 



Hadoop streaming is easy to implement in Hive 
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CREATE VIEW  
  analytics.disaggregation_outputs_view  
AS 
SELECT  
  TRANSFORM ( 
    diw.temperature, 
    diw.usage_value 
  ) 
USING  
  ‘weather_disaggregation.R’ 
FROM 
  analytics.disaggregation_inputs_view diw 
; 

Executable reads 
from stdin and 

writes to stdout 



Simple SQL syntax to produce any result 

105 

Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

2 

4 

3 1 

Hadoop 
Cluster 

Algorithm
s 

2 

4 

3 1 

Views 

Algorithm in 
any language 



We know each customer’s heating sensitivity 
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Probability(purchase)  = 
β1 Pr(Electric Heat) = 

δ1 Weather Sensitivity =  

 

 Jan Apr Jul Oct Jan Apr Jul Oct

Let’s continue with our electric 
heat model. 



We’re ready to model electric heat 
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Probability(purchase)  = 
β1 Pr(Electric Heat) = 

δ1 Weather Sensitivity + 

δ2 Neighbors Heat + 

δ3 Natural Gas Price 

Let’s get our data. 



Setup a view to fetch data for electric heat 
model 

108 

Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

2 

4 

3 1 

Hadoop 
Cluster 

Algorithm
s 

2 

4 

3 1 

Views 



Implement electric heat model in a view 
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Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

2 

4 

3 1 

Hadoop 
Cluster 

Algorithm
s 

2 

4 

3 1 

Views 



We know each customer’s heat type 
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Probability(purchase)  = 
    Pr(Electric Heat) = 

δ1 Weather Sensitivity + 

δ2 Neighbors Heat + 

δ3 Natural Gas Price 

Let’s continue with our water 
heater purchase model. 



We’re ready to model purchase behavior 
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Probability(purchase)  = 
β1 Electric Heat + 

β2 Similar Purchases + 

β3 Neighbors Purchased + 

β4 Response Rate + 

β5 Type Of Message 

Let’s get our data. 



Setup a view to fetch data for purchase 
behavior model 
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Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

2 

4 

3 1 

Hadoop 
Cluster 

Algorithm
s 

2 

4 

3 1 

Views 



Implement purchase behavior model 
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Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

2 

4 

3 1 

Hadoop 
Cluster 

Algorithm
s 

2 

4 

3 1 

Views 



We have our desired result 
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Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

2 

4 

3 1 

Hadoop 
Cluster 

Algorithm
s 

2 

4 

3 1 

Views 

One query to 
get the list 



Major plumbing in the old world 
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Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
interaction 

history 

Additional 
data 

streams 

Analytics 
server 



Some considerations on the past vs now 
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Refresh data 

Score new 
households 

Add new data 
source 

Build new 
model 

Past Now 



Refreshing data is a breeze 
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Refresh data Major plumbing Single query 

Score new 
households 

Add new data 
source 

Build new 
model 

Past Now 



Easy to calculate insights for new households 
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Refresh data Major plumbing Single query 

Score new 
households 

Major plumbing Single query 

Add new data 
source 

Build new 
model 

Past Now 



New data? No problem. 
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Refresh data Major plumbing Single query 

Score new 
households 

Major plumbing Single query 

Add new data 
source 

Major plumbing Couple lines of SQL 

Build new 
model 

Past Now 



Re-use previous work for new models 
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Refresh data Major plumbing Single query 

Score new 
households 

Major plumbing Single query 

Add new data 
source 

Major plumbing Couple lines of SQL 
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Hadoop radically reduces plumbing 
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Refresh data Major plumbing Single query 
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Big data 



Big data 

Quantity 



Big data 

Variety + Quantity 



It doesn’t have to be like this 

125 

Utility 
usage data 

Thermostat 
data 

Weather 
data 

Customer 
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history 

Additional 
data 
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Analytics 
server 



You could look for a new job 
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http://careers.stackoverflow.com/jobs?searchTerm=data+scientist&location= 



Hadoop 

Big data plumbing 



Happy plumbing! 

Erik Shilts 
Advanced Analytics 
 
 
erik.shilts@opower.com 
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